FDA Perspective on Aseptic Process Simulation for Cell Therapy Product Manufacturing
Presented by Dr Lily Koo, Consumer Safety Officer at Food and Drug Administration
The manufacturing processes for cell therapy products can be highly complex, non-conventional, and product-specific. Aseptic techniques are often required throughout manufacture. The challenge to appropriately and effectively validate aseptic processing requires that industry and regulatory bodies rethink how validation strategies are best applied to this novel class of products. This presentation will address FDA perspective on aseptic process simulation for cell therapy products. It will highlight some unique manufacturing/processing features that are shared among cell therapy products and should be considered during aseptic process simulation study design. The presentation will also cover elements of the traditional validation approach and how they could be appropriately applied to cell therapy manufacturing.
Followed by Process Control Strategy to Mitigate Contamination Risk of an Aseptic Viral Vector Production
Presented by Dr Keen Chung, Principal Scientist (Upstream Process) at Pall Biotech
Adeno-associated virus (AAV) vectors are potent gene therapy vectors, used to deliver therapeutic transgenes to target tissues. Gene therapy clinical trials often require high titer vector preparations to adequately deliver the therapeutic transgene, in great excess of research-level production utilized in many laboratories. To bring the virus into the pre-clinical and clinical phases, Pall Biotech simplified, optimized and scaled-up the current upstream and downstream process of viral vector production to industrial scales using the fully-closed, single-use Xpansion® multiplate seed train bioreactor and the production packed-bed iCELLis® 500 single-use bioreactor. In these processes, it is important to ensure that steps are built into the process to ensure adequate control of adventitious agents.